Ch2. Using Transformers
1. Introduction
2. Behind the pipeline

2.1. Preprocessing with a Tokenizer

2.2. Going through the model
2.3. A high-dimensional vector?
2.4. Model heads: Masking sense out of numbers
2.5. Postprocessing the output
3. Models
3.1. Creating a Transformer
3.2. Different loading methods
3.3. Saving methods

3.4. Using a Transformer model for inference
4. Tokenizers
4.1. Loading and Saving
4.2. Encoding
4.3. Tokenization
4.4. From tokens to input IDs
4.5. Decoding
5. Handling multiple sequences
5.1. Models expect a batch of inputs
5.2. Padding the inputs
5.3. Attention Masks
5.4. Longer sequences
6. Putting it all together
6.1. Tokenizer
6.2. Special tokens
6.3. 한줄로 보기
관련코드 Link
Last updated